336 research outputs found

    First- and Second-Trimester Reference Intervals for Thyroid Hormones during Pregnancy in “Rhea” Mother-Child Cohort, Crete, Greece

    Get PDF
    Estimation and interpretation of thyroid function tests in pregnant women is of utmost importance for maternal, fetal and neonatal health. Our objective was to calculate laboratory- and geography-specific reference intervals for thyroid hormones during pregnancy in an iodine-sufficient area of the Mediterranean, Crete, Greece. This project was performed in the context of “Rhea” mother-child cohort. Fulfillment of extensive questionnaires and estimation of free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH), and antithyroid antibodies were performed. The reference population was defined using inclusion criteria regarding thyroidal, obstetric, and general medical status of women. Reference interval for TSH was 0.05–2.53 μIU/mL for the first and 0.18–2.73 μIU/mL for the second trimester. 6,8% and 5,9% of women in the first and second trimester, respectively, had TSH higher than the upper reference limit. These trimester-specific population-based reference ranges are essential in everyday clinical practice for the correct interpretation of thyroid hormone values and accurate classification of thyroid disorders

    Access to

    Get PDF
    Estimation and interpretation of thyroid function tests in pregnant women is of utmost importance for maternal, fetal and neonatal health. Our objective was to calculate laboratory-and geography-specific reference intervals for thyroid hormones during pregnancy in an iodine-sufficient area of the Mediterranean, Crete, Greece. This project was performed in the context of "Rhea" mother-child cohort. Fulfillment of extensive questionnaires and estimation of free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH), and antithyroid antibodies were performed. The reference population was defined using inclusion criteria regarding thyroidal, obstetric, and general medical status of women. Reference interval for TSH was 0.05-2.53 μIU/mL for the first and 0.18-2.73 μIU/mL for the second trimester. 6,8% and 5,9% of women in the first and second trimester, respectively, had TSH higher than the upper reference limit. These trimester-specific population-based reference ranges are essential in everyday clinical practice for the correct interpretation of thyroid hormone values and accurate classification of thyroid disorders

    Prenatal metal mixtures and child blood pressure in the Rhea mother-child cohort in Greece

    Get PDF
    Background: Child blood pressure (BP) is predictive of future cardiovascular risk. Prenatal exposure to metals has been associated with higher BP in childhood, but most studies have evaluated elements individually and measured BP at a single time point. We investigated impacts of prenatal metal mixture exposures on longitudinal changes in BP during childhood and elevated BP at 11 years of age. Methods: The current study included 176 mother-child pairs from the Rhea Study in Heraklion, Greece and focused on eight elements (antimony, arsenic, cadmium, cobalt, lead, magnesium, molybdenum, selenium) measured in maternal urine samples collected during pregnancy (median gestational age at collection: 12 weeks). BP was measured at approximately 4, 6, and 11 years of age. Covariate-adjusted Bayesian Varying Coefficient Kernel Machine Regression and Bayesian Kernel Machine Regression (BKMR) were used to evaluate metal mixture impacts on baseline and longitudinal changes in BP (from ages 4 to 11) and the development of elevated BP at age 11, respectively. BKMR results were compared using static versus percentile-based cutoffs to define elevated BP. Results: Molybdenum and lead were the mixture components most consistently associated with BP. J-shaped relationships were observed between molybdenum and both systolic and diastolic BP at age 4. Similar associations were identified for both molybdenum and lead in relation to elevated BP at age 11. For molybdenum concentrations above the inflection points (~ 40–80 μg/L), positive associations with BP at age 4 were stronger at high levels of lead. Lead was positively associated with BP measures at age 4, but only at high levels of molybdenum. Potential interactions between molybdenum and lead were also identified for BP at age 11, but were sensitive to the cutoffs used to define elevated BP. Conclusions: Prenatal exposure to high levels of molybdenum and lead, particularly in combination, may contribute to higher BP at age 4. These early effects appear to persist throughout childhood, contributing to elevated BP in adolescence. Future studies are needed to identify the major sources of molybdenum and lead in this population

    Prenatal environmental exposures associated with sex differences in childhood obesity and neurodevelopment

    Get PDF
    Background Obesity and neurodevelopmental delay are complex traits that often co-occur and differ between boys and girls. Prenatal exposures are believed to influence children’s obesity, but it is unknown whether exposures of pregnant mothers can confer a different risk of obesity between sexes, and whether they can affect neurodevelopment. Methods We analyzed data from 1044 children from the HELIX project, comprising 93 exposures during pregnancy, and clinical, neuropsychological, and methylation data during childhood (5–11 years). Using exposome-wide interaction analyses, we identified prenatal exposures with the highest sexual dimorphism in obesity risk, which were used to create a multiexposure profile. We applied causal random forest to classify individuals into two environments: E1 and E0. E1 consists of a combination of exposure levels where girls have significantly less risk of obesity than boys, as compared to E0, which consists of the remaining combination of exposure levels. We investigated whether the association between sex and neurodevelopmental delay also differed between E0 and E1. We used methylation data to perform an epigenome-wide association study between the environments to see the effect of belonging to E1 or E0 at the molecular level. Results We observed that E1 was defined by the combination of low dairy consumption, non-smokers’ cotinine levels in blood, low facility richness, and the presence of green spaces during pregnancy (ORinteraction¿=¿0.070, P¿=¿2.59¿×¿10-5). E1 was also associated with a lower risk of neurodevelopmental delay in girls, based on neuropsychological tests of non-verbal intelligence (ORinteraction¿=¿0.42, P¿=¿0.047) and working memory (ORinteraction¿=¿0.31, P¿=¿0.02). In line with this, several neurodevelopmental functions were enriched in significant differentially methylated probes between E1 and E0. Conclusions The risk of obesity can be different for boys and girls in certain prenatal environments. We identified an environment combining four exposure levels that protect girls from obesity and neurodevelopment delay. The combination of single exposures into multiexposure profiles using causal inference can help determine populations at risk.Peer ReviewedPostprint (published version

    The early-life exposome modulates the effect of polymorphic inversions on DNA methylation

    Get PDF
    Polymorphic genomic inversions are chromosomal variants with intrinsic variability that play important roles in evolution, environmental adaptation, and complex traits. We investigated the DNA methylation patterns of three common human inversions, at 8p23.1, 16p11.2, and 17q21.31 in 1,009 blood samples from children from the Human Early Life Exposome (HELIX) project and in 39 prenatal heart tissue samples. We found inversion-state specific methylation patterns within and nearby flanking each inversion region in both datasets. Additionally, numerous inversion-exposure interactions on methylation levels were identified from early-life exposome data comprising 64 exposures. For instance, children homozygous at inv-8p23.1 and higher meat intake were more susceptible to TDH hypermethylation (P¿=¿3.8¿×¿10-22); being the inversion, exposure, and gene known risk factors for adult obesity. Inv-8p23.1 associated hypermethylation of GATA4 was also detected across numerous exposures. Our data suggests that the pleiotropic influence of inversions during development and lifetime could be substantially mediated by allele-specific methylation patterns which can be modulated by the exposome.Peer ReviewedPostprint (published version

    The early-life exposome and epigenetic age acceleration in children

    Get PDF
    The early-life exposome influences future health and accelerated biological aging has been proposed as one of the underlying biological mechanisms. We investigated the association between more than 100 exposures assessed during pregnancy and in childhood (including indoor and outdoor air pollutants, built environment, green environments, tobacco smoking, lifestyle exposures, and biomarkers of chemical pollutants), and epigenetic age acceleration in 1,173 children aged 7 years old from the Human Early-Life Exposome project. Age acceleration was calculated based on Horvath’s Skin and Blood clock using child blood DNA methylation measured by Infinium HumanMethylation450 BeadChips. We performed an exposure-wide association study between prenatal and childhood exposome and age acceleration. Maternal tobacco smoking during pregnancy was nominally associated with increased age acceleration. For childhood exposures, indoor particulate matter absorbance (PMabs) and parental smoking were nominally associated with an increase in age acceleration. Exposure to the organic pesticide dimethyl dithiophosphate and the persistent pollutant polychlorinated biphenyl-138 (inversely associated with child body mass index) were protective for age acceleration. None of the associations remained significant after multiple-testing correction. Pregnancy and childhood exposure to tobacco smoke and childhood exposure to indoor PMabs may accelerate epigenetic aging from an early ageThe study received funding from the European Community’s Seventh Framework Programme (FP7/2007-206) (grant agreement no 308333) (HELIX project), the H2020-EU.3.1.2. - Preventing Disease Programme (grant agreement no 874583) (ATHLETE project), and from the European Union’s Horizon 2020 research and innovation programme (grant Agreement number: 733206) (Early Life stressors and Lifecycle Health (LIFECYCLE)). BiB received funding from the Welcome Trust (WT101597MA), from the UK Medical Research Council (MRC) and Economic and Social Science Research Council (ESRC) (MR/N024397/1). INMA was supported by grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya-CIRIT. KANC was funded by the grant of the Lithuanian Agency for Science Innovation and Technology (6-04-2014_31V-66). The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. The Rhea project was financially supported by European projects (EU FP6-2003-Food-3-NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. Project No 211250 Escape, EU FP7-2008-ENV-1.2.1.4 Envirogenomarkers, EU FP7-HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6. Proposal No 226285 ENRIECO, EU- FP7- HEALTH-2012 Proposal No 308333 HELIX), and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011-2014; “Rhea Plus”: Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012-15). We acknowledge support from the Spanish Ministry of Science and Innovation through the “Centro de Excelencia Severo Ochoa 2019-2023” Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program. OR was funded by a UKRI Future Leaders Fellowship (MR/S03532X/1). MV-U and CR-A were supported by a FI fellowship from the Catalan Government (FI-DGR 2015 and #016FI_B 00272). MC received funding from Instituto Carlos III (Ministry of Economy and Competitiveness) (CD12/00563 and MS16/00128)S

    Rational design and direct fabrication of multi-walled hollow electrospun fibers with controllable structure and surface properties

    Get PDF
    Multi-walled hollow fibers with a novel architecture are fabricated through utilizing a direct,one-step tri-axial electrospinning process with a manufacturing methodology which does not require any post-treatments for the removal of core material for creating hollowness in the fiber structure. The hydrophilicity of both inner and outer layers’ solution needs to be dissimilar and carefully controlled for creating a two-walled/layered hollow fiber tructure with a sharp interface. To this end, Hansen solubility parameters are used as n index of layer solution affinity hence allowing for control of diffusion across the layers and the surface porosity whereby an ideal multi-walled hollow electrospun fiber is shown to be producible by tri-axial electrospinning process. Multi-walled hollow electrospun fibers with different inner and outer diameters and different surface morphology are successfully produced by using dissimilar material combinations for inner and outer layers (i.e., hydrophobic polymers as outer layer and hydrophilic polymer as inner layer). Upon using different material combinations for inner and outer layers, it is shown that one may control both the outer and inner diameters of the fiber. The inner layer not only acts as a barrier and thus provides an ease in the encapsulation of functional core materials of interest with different viscosities but also adds stiffness to the fiber. The structure and the surface morphology of fibers are controlled by changing applied voltage, polymer types, polymer concentration, and the evaporation rate of solvents. It is demonstrated that if the vapor pressure of the solvent for a given outer layer polymer is low, the fiber diameter decreases down to 100 nm whereas solvents with higher vapor pressure result in fibers with the outer diameter of up to 1 μm. The influence of electric field strength on the shape of Taylor cone is also monitored during the production process and the manufactured fibers are structurally investigated by relevant surface characterization techniques

    In utero exposure to bisphenols and asthma, wheeze, and lung function in school-age children: a prospective meta-analysis of 8 European birth cohorts

    Get PDF
    [EN] BACKGROUND: In utero exposure to bisphenols, widely used in consumer products, may alter lung development and increase the risk of respiratory morbidity in the offspring. However, evidence is scarce and mostly focused on bisphenol A (BPA) only. OBJECTIVE: To examine the associations of in utero exposure to BPA, bisphenol F (BPF), and bisphenol S (BPS) with asthma, wheeze, and lung function in school-age children, and whether these associations differ by sex. METHODS: We included 3,007 mother-child pairs from eight European birth cohorts. Bisphenol concentrations were determined in maternal urine samples collected during pregnancy (1999-2010). Between 7 and 11years of age, current asthma and wheeze were assessed from questionnaires and lung function by spirometry. Wheezing patterns were constructed from questionnaires from early to mid-childhood. We performed adjusted random-effects meta-analysis on individual participant data. RESULTS: Exposure to BPA was prevalent with 90% of maternal samples containing concentrations above detection limits. BPF and BPS were found in 27% and 49% of samples. In utero exposure to BPA was associated with higher odds of current asthma (OR=1.13, 95% CI=1.01, 1.27) and wheeze (OR=1.14, 95% CI=1.01, 1.30) (p-interaction sex=0.01) among girls, but not with wheezing patterns nor lung function neither in overall nor among boys. We observed inconsistent associations of BPF and BPS with the respiratory outcomes assessed in overall and sex-stratified analyses. CONCLUSION: This study suggests that in utero BPA exposure may be associated with higher odds of asthma and wheeze among school-age girls.The research leading to these results has received funding from Instituto de Salud Carlos III and European Union’s FEDER funds (CP16/00128 – the ENDOLUNG project, and PI17/01194 – the INMA-Ado-Respi Project), the European Community’s Seventh Framework Programme (FP7/2007–206) under grant agreement no 308,333 - the HELIX project –, and from the EC’s Horizon 2020 research and innovation programme under grant agreement No 874,583 – the ATHLETE project. Generation R: This study was funded by The Erasmus MC, Rotterdam, the Erasmus University Rotterdam and the Netherlands Organization for Health Research and Development. The project received funding from the European Union's Horizon 2020 research and innovation programme (LIFECYCLE, grant agreement No 733206, 2016; EUCAN-Connect grant agreement No 824989; ATHLETE, grant agreement No 874583). Dr. Vincent Jaddoe received a grant from the European Research Council (ERC-2014-CoG-648916). This study was supported by grant R01-ES022972 and R01-ES029779 from the National Institutes of Health, USA. The researchers are independent from the funders. The study sponsors had no role in the study design, data analysis, interpretation of data, or writing of this report. INMA Gipuzkoa: This study was funded by grants from Instituto de Salud Carlos III (FIS-PI13/02187 and FIS-PI18/01142 incl. FEDER funds), CIBERESP, Department of Health of the Basque Government (2015111065), and the Provincial Government of Gipuzkoa (DFG15/221) and annual agreements with the municipalities of the study area (Zumarraga, Urretxu, Legazpi, Azkoitia y Azpeitia y Beasain). INMA Sabadell: This study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; PI041436; PI081151 incl. FEDER funds; PI12/01890 incl. FEDER funds; CP13/00054 incl. FEDER funds), CIBERESP, Generalitat de Catalunya-CIRIT 1999SGR 00241, Generalitat de Catalunya-AGAUR (2009 SGR 501, 2014 SGR 822), Fundació La marató de TV3 (090430), Spanish Ministry of Economy and Competitiveness (SAF2012-32991 incl. FEDER funds), Agence Nationale de Securite Sanitaire de l’Alimentation de l’Environnement et du Travail (1262C0010), European Commission (261357, 308333, 603,794 and 634453). Alicia Abellan holds a LifeCycle fellowship, funded from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 733206. Maribel Casas holds a Miguel Servet fellowship (CP16/00128) funded by Instituto de Salud Carlos III and co-funded by European Social Fund “Investing in your future“. We acknowledge support from the Spanish Ministry of Science and Innovation through the “Centro de Excelencia Severo Ochoa 2019–2023” Program (2018–000806-S), and support from the Generalitat de Catalunya through the CERCA Program. INMA Valencia: INMA Valencia was funded by Grants from UE (FP7-ENV-2011 cod 282,957 and HEALTH.2010.2.4.5–1), Spain: ISCIII (G03/176; FIS-FEDER: PI09/02647, PI11/01007, PI11/02591, PI11/02038, PI13/1944, PI13/2032, PI14/00891, PI14/01687, PI16/1288, PI17/00663, and PI19/1338; Miguel Servet-FEDER CP11/00178, CP15/00025, and CPII16/00051), Alicia Koplowitz Foundation, and Generalitat Valenciana: FISABIO (UGP 15–230, UGP-15–244, UGP-15–249, and AICO/2020/285). BiB: This report is independent research funded by the National Institute for Health Research Yorkshire and Humber ARC (NIHR200166) and BiB receives core infrastructure funding from the Wellcome Trust (WT101597MA). The views expressed in this publication are those of the author(s) and not necessarily those of the National Institute for Health Research or the Department of Health and Social Care. EDEN: The EDEN study was supported by Foundation for medical research (FRM), National Agency for Research (ANR), National Institute for Research in Public health (IRESP: TGIR cohorte santé 2008 program), French Ministry of Health (DGS), French Ministry of Research, INSERM Bone and Joint Diseases National Research (PRO-A), and Human Nutrition National Research Programs, Paris-Sud University, Nestlé, French National Institute for Population Health Surveillance (InVS), French National Institute for Health Education (INPES), the European Union FP7 programmes (FP7/2007–2013, HELIX, ESCAPE, ENRIECO, Medall projects), Diabetes National Research Program (through a collaboration with the French Association of Diabetic Patients (AFD)), French Agency for Environmental Health Safety (now ANSES), Mutuelle Générale de l’Education Nationale a complementary health insurance (MGEN), French national agency for food security, French-speaking association for the study of diabetes and metabolism (ALFEDIAM). MoBa: The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. RHEA: The Rhea project was financially supported by European projects (EU FP6-2003-Food-3-NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. Project No 211,250 Escape, EU FP7-2008-ENV-1.2.1.4 Envirogenomarkers, EU FP7-HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6. Proposal No 226,285 ENRIECO, EU- FP7- HEALTH-2012 Proposal No 308,333 HELIX, H2020 LIFECYCLE, grant agreement No 733206, H2020 ATHLETE, grant agreement No 874583), and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011–2014; “Rhea Plus”: Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012–15). Additional funding from NIEHS supported Dr Chatzi (R01ES030691, R01ES029944, R01ES030364, R21ES029681, R21ES028903, and P30ES007048)
    corecore